
CS448f: Image Processing For 
Photography and Vision

Fast Filtering



Problems in Computer Vision



Computer Vision in One Slide

1) Extract some features from some images 

2) Use these to formulate some (hopefully 
linear) constraints

3) Solve a system of equations your favorite 
method to produce...



Computer Vision in One Slide

0) Blur the input

1) Extract some features from some images 

2) Use these to formulate some (hopefully linear) 
constraints

3) Solve a system of equations your favorite method 
to produce...



Why do we blur the input?

• To remove noise before processing

• So we can use simpler filters later

• To decompose the input into different 
frequency bands

– tonemapping, blending, etc



• Fast Filtering

– Composing Filters

– Fast Rect and 
Gaussian Filters

– Local Histogram Filters

– The Bilateral Grid

• Applications

– Joint Bilateral Filter

– Flash/No Flash

– Joint Bilateral Upsample

– ASTA



• Fast Filtering

– Composing Filters

– Fast Rect and 
Gaussian Filters

– Local Histogram Filters

– The Bilateral Grid

This thing is awesome.

• Applications

– Joint Bilateral Filter

– Flash/No Flash

– Joint Bilateral Upsample

– ASTA



Composing Filters

• F is a bad gradient filter

• It’s cheap to evaluate 

– val = Im(x+5, y) – Im(x-5, y)

• G is a good gradient filter -> 

• It’s expensive to evaluate

– for (dx=-10; dx<10; dx++)

val += filter(dx)*Im(x+dx, y)

F=

G=



Composing Filters

• But F * B = G

• and convolution is associative

• so:    G*Im = (F*B)*Im = F*(B*Im)

* =



Composing Filters

• So if you need to take lots of good filters:

• Blur the image nicely once Im2 = (B*Im)

• Use super simple filters for everything else

• F1 * Im2 F2 * Im2 F3 * Im2      ...

• You only performed one expensive filter (B)

• Let’s make the expensive part as fast as possible



Fast Rect Filters

• Suggestions?



Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters
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Fast Rect Filters

• Complexity?

– Horizontal pass: O((w+f)h) = O(wh)

– Vertical pass: O((h+f)w) = O(wh)

– Total: O(wh)

• Precision can be an issue

0 0 510 5 0 0 0 0 0 0

59 59 59 59 59 0 -1 -1 -1 -1



Fast Rect Filters

• How can I do this in-place?



Gaussian Filters

• How can we extend this to Gaussian filters?

• Common approach:

– Take FFT O(w h ln(w) ln(h))

– Multiply by FFT of Gaussian O(wh)

– Take inverse FFT O(w h ln(w) ln(h))

– Total cost: O(w ln(w) h ln(h))

• Cost independent of filter size 

• Not particularly cache coherent 



Gaussian v Rect



Gaussian v Rect*Rect



Gaussian v Rect3



Gaussian v Rect4



Gaussian v Rect5



Gaussian



Rect (RMS = 0.00983)



Gaussian



Rect2 (RMS = 0.00244)



Gaussian



Rect3 (RMS = 0.00173)



Gaussian



Rect4 (RMS = 0.00176)



Gaussian



Rect5 (RMS = 0.00140)



Gaussian Filters

• Conclusion: Just do 3 rect filters instead

• Cost: O(wh)

• Cost independent of filter size 

• More cache coherent 

• Be careful of edge conditions 

• Hard to construct the right filter sizes: 



Filter sizes

• Think of convolution as randomly scattering 
your data around nearby

• How far data is scattered is described by the 
standard deviation of the distribution

• standard deviation = sqrt(variance)

• Variance adds

– Performing a filter with variance v twice produces 
a filter with variance 2v



Filter sizes

• Think of convolution as randomly scattering 
your data around nearby

• How far data is scattered is described by the 
standard deviation of the distribution

• standard deviation = sqrt(variance)

• Variance adds

– Performing a filter with variance v twice produces 
a filter with variance 2v



Filter Sizes

• Variance adds

– Performing a filter with variance v twice produces 
a filter with variance 2v

• Standard deviation scales

– A filter with standard deviation s, when scaled to 
be twice as wide, has standard deviation 2s



Constructing a Gaussian out of Rects 

• A rect filter of width 2w+1 has variance: 
w(w+1)/3

• Attainable standard deviations using a single 
rect [sqrt(w(w+1)/3)]:
– 0.82  1.41  2  2.58  3.16  3.74  4.32 ...

• Composing three identical rects of width 2w+1 
has variance: w(w+1)

• Attainable std devs [sqrt(w(w+1))]:
– 1.41  2.45  3.46  4.47  5.48  6.48  7.48 ... 1632.5



Constructing a Gaussian out of Rects 

• Attainable standard deviations using three 
different odd rect filters:
– 1.41  1.825  2.16  2.31  2.45  2.58  2.83  2.94  3.06 

... 8.25  8.29  8.32  8.37  8.41  8.45  8.48

• BUT: if they’re too different, the result won’t 
look Gaussian

• Viable approach: Get as close as possible with 
3 identical rects, do the rest with a small 
Gaussian



Integral Images

• Fast rects are good for filtering an image...

• But what if we need to compute lots of filters 
of different shapes and sizes quickly?

• Classifiers need to do this

-1
+1 +1

-2



Integrate the Image ahead of time
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• Each pixel is the sum of everything above and 
left

• ImageStack -load dog1.jpg -integrate x 

-integrate y



Integral Images

• Fast to compute (just run along each row and 
column adding up)

• Allows for arbitrary sized rect filters



Integral Images

• Fast to compute (just run along each row and 
column adding up)

• Allows for arbitrary sized rect filters

+



Integral Images
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Integral Images
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Integral Images

• Fast to compute (just run along each row and 
column adding up)

• Allows for arbitrary sized rect filters

+



Integral Images

• Fast sampling of arbitrary rects

• Precision can be an issue

• Can only be used for rect filters...



Higher Order Integral Images

• Fast sampling of arbitrary polynomials
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Higher Order Integral Images

• Let’s say we want to evaluate a filter shaped 
like (4-x2) centered around each pixel



Higher Order Integral Images
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Higher Order Integral Images
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We can compute each 
term using the integral 
images of various 
orders. 

No summations over u 
required.



Gaussians using 
Higher Order Integral Images

• Construct a polynomial that looks kinda like a 
Gaussian, e.g. (x-1)2(x+1)2



IIR Filters

• We can also use feedback loops to create 
Gaussians...



IIR Filters
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IIR Filters
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IIR Filters

0 0 32

0 0 64 0 0 0 0 0 0 0

÷2



IIR Filters
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IIR Filters
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IIR Filters

0 0 32 16 8 4

0 0 64 0 0 0 0 0 0 0

÷2



IIR Filters
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IIR Filters
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IIR Filters
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IIR Filters
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IIR = Infinite Impulse Response

• A single spike has an effect that continues 
forever

• The example above was an exponential decay

• Equivalent to convolution by:



IIR Filters

• Can be done in place 

• Makes large, smooth filters, with very little 
computation 

• Somewhat lopsided...



IIR Filters

• One forward pass, one backward pass

• = exponential decay convolved with flipped 
exponential decay

• Somewhat more Gaussian-ish



More Advanced IIR Filters

a b c d e

Each output is a weighted average of the 
next input, and the last few outputs



• It’s possible to optimize the parameters to 
match a Gaussian of a certain std.dev.

• It’s harder to construct a family of them that 
scales across standard deviations

More Advanced IIR Filters



Filtering by Resampling

• This looks like we just zoomed a small image

• Can we filter by downsampling then upsampling?



Filtering by Resampling



Filtering by Resampling

• Downsampled with rect (averaging down)

• Upsampled with linear interpolation



Use better upsampling?

• Downsampled with rect (averaging down)

• Upsampled with bicubic interpolation



Use better downsampling?

• Downsampled with tent filter

• Upsampled with linear interpolation



Use better downsampling?

• Downsampled with bicubic filter

• Upsampled with linear interpolation



Resampling Simulation



Best Resampling

• Downsampled, blurred, then upsampled with 
bicubic filter



What's the point?

• Q: If we can blur quickly without resampling, 
why bother resampling?

• A: Memory use

• Store the blurred image at low res, sample it 
at higher res as needed.



Recap: Fast Linear Filters

1) Separate into a sequence of simpler filters

- e.g. Gaussian is separable across dimension

- and can be decomposed into rect filters

2) Separate into a sum of simpler filters



Recap: Fast Linear Filters

3) Separate into a sum of easy-to-precompute 
components (integral images)

- great if you need to compute lots of different filters

4) Resample 

- great if you need to save memory

5) Use feedback loops (IIR filters) 

- great if you never need to change the std.dev. of 
your filter



Your mission:

• Implement one of these fast Gaussian blur 
methods

• We only care about standard deviations above 2.

• We don’t care about boundary conditions (ie 
we’ll ignore everything within 3 standard 
deviations of the boundary)

• It should be faster than -gaussianblur, and 
accurate enough to have no visual artifacts
– precise timing and RMS requirements will be put up 

soon



Your mission:

• This time we care more about speed and less 
about accuracy. (40% 20%)

• There will be a competition the Tuesday after 
the due date.

• Due next Thursday at 11:59pm.

• Email us as before to submit.



Histogram Filtering

• The fast rect filter 

– maintained a sum

– updated it for each new pixel

– didn't recompute from scratch

• What other data structures might we maintain 
and update for more complex filters?



Histogram Filtering

• The min filter, max filter, and median filter

– Only care about what pixel values fall into 
neighbourhood, not their location

– Maintain a histogram of the pixels under the filter 
window, update it as pixels enter and leave



Histogram Updating



Histogram Updating
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Histogram Updating



Histogram Updating
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Histogram Updating



Histogram-Based Fast Median

• Maintain:

– hist = Local histogram

– med = Current Median

– lt = Number of pixels less than current median

– gt = Number of pixels greater than current median



Histogram-Based Fast Median

• while (lt < gt):

– med--

– Update lt and gt using hist

• while (gt < lt):

– med++

– Updated lt and gt using hist



Histogram-Based Fast Median

• Complexity?

• Extend this to percentile filters? 

• Max filters? Min filters?



The Bilateral Filter

• Pixels are mixed with nearby pixels that have a 
similar value
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The Bilateral Filter

• We can combine the exponential terms...
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Linearizing the Bilateral Filter

• The product of an 1D gaussian and an 2D 
gaussian across different dimensions is a 
single 3D gaussian.

• So we're just blurring in some 3D space

• Axes are:

– image x coordinate

– image y coordinate

– pixel value



The Bilateral Grid – Step 1
Chen et al SIGGRAPH 07

• Take the 2D image Im(x, y)

• Create a 3D volume V(x, y, z), such that:

– Where Im(x, y) = z, V(x, y, z) = z

– Elsewhere, V(x, y, z) = 0



The Bilateral Grid – Step 2
• Blur the 3D volume (using a fast blur)



The Bilateral Grid – Step 3

• Slice the volume at z values corresponding to 
the original pixel values



Comparison

Input

Regular blur

Bilateral Grid Slice



Pixel Influence

• Each pixel blurred together with 

– those nearby in space (x coord on this graph)

– and value (y coord on this graph)



Pixel Influence

• Each pixel blurred together with 

– those nearby in space (x coord on this graph)

– and value (y coord on this graph)

No crosstalk over 
this edge



The weight channel

• This actually just computes:

• We need:
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The weight channel
• Solution: add a weight channel

• Create a 3D volume V(x, y, z), such that:
– Where Im(x, y) = z, V(x, y, z) = (z,1)

– Elsewhere, V(x, y, z) = (0,0)

• At the end, divide by the weight channel



Bilateral Grid = Local Histogram Transform

• Take the weight channel:

• Blur in space (but not value)



Bilateral Grid = Local Histogram Transform

• One column is now the histogram of a region 
around a pixel!

• If we blur in value too, it’s just a histogram with 
fewer buckets

• Useful for median, min, max filters as well.



The Elephant in the Room

• Why hasn’t anyone done this before?

• For a 5 megapixel image at 3 bytes per pixel, 
the bilateral grid with 256 value buckets 
would take up:
– 5*1024*1024*(3+1)*256 = 5120 Megabytes

• But wait, we never need the original grid, just 
the original grid blurred...



Use Filtering by Resampling!

• Construct the bilateral grid at low resolution
– Use a good downsampling filter to put values in the 

grid

– Blur the grid with a small kernel (eg 5x5)

– Use a good upsampling filter to slice the grid

• Complexity?
– Regular bilateral filter: O(w*h*f*f)

– Bilateral grid implementation:
• time: O(w*h) 

• memory: O(w/f * h/f * 256/g) 



Use Filtering by Resampling!

• Construct the bilateral grid at low resolution
– Use a good downsampling filter to put values in the 

grid

– Blur the grid with a small kernel (eg 5x5)

– Use a good upsampling filter to slice the grid

• Complexity?
– Regular bilateral filter: O(w*h*f*f)

– Bilateral grid implementation:
• time: O(w*h) 

• memory: O(w/f * h/f * 256/g) 

Gets smaller as the 
filter gets larger!



Dealing with Color

• I’ve treated value as 1D, it’s really 3D

• The bilateral grid should hence really be 5D

• Memory usage starts to go up...

• Most people just use distance in luminance 
instead of full 3D distance

– values in grid are 3D colors (4 bytes per entry)

– positions of values is just the 1D luminance 

= (R+G+B)/3



Using distance in 3D 
vs

Just using distance in luminance

Same luminance

Input Full Bilateral Luminance Only Bilateral



Wait, this ‘limitation’ can be useful

• Values in the bilateral grid are the things we 
want to blur

• Positions (and hence distances) in the bilateral 
grid determine which values we mix

• So we could, for example, get the positions 
from one image, and the values from another



Joint Bilateral Filter

Reference Image

Input Image

Result



Joint Bilateral Application

• Flash/No Flash photography

• Take a photo with flash (colors look bad)

• Take a photo without flash (noisy)

• Use the edges from the flash photo to help 
smooth the blurry photo

• Then add back in the high frequencies from 
the flash photo

• Digital Photography with Flash and No-Flash Image Pairs

Petschnigg et al, SIGGRAPH 04



Flash:



No Flash:



Result:



Joint Bilateral Upsample
Kopf et al, SIGRAPH 07

• Say we’ve computed something expensive at low 
resolution (eg tonemapping, or depth)

• We want to use the result at the original 
resolution

• Use the original image as the positions
• Use the low res solution as the values
• Since the bilateral grid is low resolution anyway, 

just:
– read in the low res values at positions given by the 

downsampled high res image
– slice using the high res image



Joint Bilateral Upsample Example

• Low resolution depth, high resolution color

• Depth edges probably occur at color edges



One final use of the bilateral filter

Video Enhancement Using Per-Pixel Virtual Exposures
Bennett & McMillan, SIGGRAPH 05

• ASTA: Adaptive Spatio-Temporal Accumulation

• Do a 3D bilateral filter on a video

• Where something isn’t moving, it will mostly 
average over time

• Where something is moving, it will just 
average over space



Key Ideas

• Filtering (even bilateral filtering) is O(w*h)

• You can also filter by downsampling, possibly 
blurring a little, then upsampling

• The bilateral grid is a local histogram 
transform that’s useful for many things


